Ν	a	m	e	:	
			-		

Data Representation, Logic, Huffman Coding, Binary Numbers

DUE: Friday March 17, 2017 @ the beginning of class Please staple all sheets together BEFORE class.

Goal: The purpose of this assignment is to get a little practice with binary numbers, think about representing data digitally, and review basic logic as the foundation of how computers compute.

Exercises:

Binary Numbers

- 1 Convert 10 base 10 to base 2.
- 2 Convert 16 base 10 to base 2.
- 3 Convert 32 base 10 to base 2.
- 4 Convert 217 base 10 to base 2.
- 5 Convert RGB color (128, 0, 255) to base 2. (____, ___, ___)
- 6 Add 1101011 base 2 to 1011100 base 2, SHOW YOUR WORK.
- 7 Add 1011 base 2 to 110 base 2. SHOW YOUR WORK.

1101011	1011
+1011100	+110

8 What letters does this binary (base 2) data correspond to assuming it is in ASCII? 01001010, 01100001, 11110111, 00110000 = ____, ____, ____, ____

ASCII	0 0 0	0 0 0 1	0 0 1 0	0 0 1 1	0 1 0 0	0 1 0 1	0 1 1 0	0 1 1 1	1 0 0	1 0 0 1	1 0 1 0	1 0 1 1	1 1 0 0	1 1 0 1	1 1 1 0	1 1 1
0000	NU	s _н	s _x	^в х	Ε _T	EQ	А _к	BL	в _s	н _т	L _F	Υ _T	FF	с _к	s ₀	s _I
0001	PL	D ₁	D_2	D_3	D_4	Νĸ	s _y	ε _Σ	с _N	ЕМ	s _B	Еc	Fs	G _s	R _S	U _s
0010		!	"	#	\$	%	δc	1	()	*	+	,	-		/
0011	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
0100	@	A	в	С	D	Е	F	G	Η	I	J	K	L	М	Ν	0
0101	Ρ	Q	R	S	т	U	V	W	Х	Y	Z	[\backslash]	^	_
0110	`	a	b	С	d	е	f	g	h	i	j	k	1	m	n	0
0111	р	q	r	ន	t	u	v	W	х	У	Z	{		}	~	Рт
1000	⁸ 0	⁸ 1	⁸ 2	⁸ 3	I _N	NL	s s	^в s	н _s	н _ј	۲ _s	PD	۴v	RI	s ₂	s ₃
1001	Рс	Р 1	۲z	s _e	сc	м	s _p	Е _Р	а ₈	٩	۵ _A	°s	s _T	°s	Рм	Р
1010	^A o	ī	¢	£	Ŷ	¥		S		©	o"	«	7	-	R	-
1011	0	±	2	3	-	μ	¶	•	u.	1	0	»	1⁄4	1/z	3/4	ż
1100	À	Á	Â	Ã	Ä	Å	Æ	Ç	È	É	Ê	Ë	Ì	Í	Î	Ï
1101	Ð	Ñ	Ò	Ó	Ô	Õ	Ö	×	Ø	Ù	Ú	Û	Ü	Ý	Þ	β
1110	à	á	â	ã	ä	å	æ	Ç	è	é	ê	ë	ì	í	î	ï
1111	ð	ñ	ò	ó	ô	õ	ö	÷	ø	ù	ú	û	ü	ý	Þ	ÿ

Name:

Logic

9 Complete the following truth tables.

(a) NOT (p OR q)

p	q	p OR q	NOT $(p \text{ OR } q)$
1	1		
1	0		
0	1		
0	0		

(b) p AND (NOT q)

р	q	NOT q	p AND (NOT q)
1	1		
1	0		
0	1		
0	0		

(c) p AND q AND r

р	q	r	p AND q	(p AND q) AND r
1	1	1		
1	0	1		
0	1	1		
0	0	1		
1	1	0		
1	0	0		
0	1	0		
0	0	0		

10 Using the 3 basic logic gates shown here, draw logic diagrams for the following logical statements.

- a NOT (P OR Q)
- b (A OR B) AND (NOT C)
- 11 Write the logical statement that corresponds to the following logic diagram.

Name:

Huffman Coding (Please attach a separate sheet of paper for the Huffman trees.)

12

a Generate a binary Huffman tree from the following letter frequencies for the word *bananarama*.

letter	b	a	n	r	m
frequency	1	5	2	1	1

b Using the binary Huffman tree you created for (a), give the binary Huffman encoding for the letter sequence *barn*.

13

- a Generate a binary Huffman tree from the letter frequencies in the tongue twister: *She sells sea shells by the seashore*. Do not include the space character in your tree.
- b Using the binary Huffman tree you created for (a), give the binary Huffman encoding for the letter sequence *share*.
- 14 Create the Huffman tree that goes with the following frequency table.

letter	с	\mathbf{s}	r	t	е
frequency	1	2	3	4	7