Recap: Ch 1 BTB

- Digital explosion
- Claude Shannon
- Exponential growth
- Moore's law
- 7 Koans of Bits

It's All Just Bits

- text bits
- pictures bits
- Voice over IP phone calls bits
- streaming audio and video bits
- Computer programs take those bits and render them so we can see/hear/feel/(smell?) them

Perfection is Normal

- Perfect copies of pictures
- Completely indistinguishable from the original
- If a bit gets corrupted we (generally) know it and can fix it.
- Cheap perfect copies are important in the music and movie industry

There is Want in the Midst of Plenty

- Media changes making old information difficult or impossible to access
- The volume of data can be overwhelming the needle in a haystack

Processing is Power

- Moore's Law
- Exponential growth (doubling every few years)
- Hard to imagine what another 10 years of this growth will make possible...

More of the Same Can Be a Whole New Thing

- Exponential growth (doubling every few years)
- 1,2,4,8,16,32,64,128,256,512,1024,2048,...
- Cell phones (death of land lines)
- Digital photography (death of film)
 - 1983 (first digital cameras for sale)
 - 1997 Kodak still going strong
 - 2007 Kodak 1/5 its size of the 80s

Nothing Goes Away

- impact on privacy
- convenience at a price
- mis-information persists
- European "right to be forgotten"

Bits Move Faster Than Thought

- Bits move nearly instantaneously around the world at very low cost
- Impacting the global economy
- Blurring the boundaries of national laws

Technology is Neither Good nor Bad

- Nuclear power
- Cryptography
- Sharing of information on the web
- Monitoring can be invasive (tracking your cell phone) or freeing (Alzheimer patient)
- Snowden, Wikileaks
- New applications bring new opportunities for criminals

Recap: Ch 2 BTB - CS Concepts

- meta data
- RFID
- cookies
- IP address
- re-identification
- bio-metric data

What are you supposed to learn?

- What is a digital footprint?
- What technology advances in the last ten years have made 'Big Brother' possible
- Which **organizations** try to protect your privacy.
- Why you should read the "Terms and Conditions" for every app you download
 - You never know what they might say. Example: Pulse App asks you to give permission for them to track every number you call
- Why you should **consider what you put onto public sites** like Facebook.
 - Are you sure your privacy settings are as you want?

What is YOUR digital footprint?

- Where are you revealing stuff you'd rather not have open to the world?
- Facebook
- Credit card information
- Cookies tracking transaction data
- Amazon purchases
- Embarrassing stuff. Facebook youtube
- Downloads tracking

If you complete a survey that does not ask for your name, address, phone number, or other obvious forms of identification, can you safely assume that your answers are truly anonymous?

- A. True
- B. False

Integrated Circuits: Millions of logical gates

So how did we get here?

- |Cs =>
 - Personal
 - Miniaturization
- Internet
- WWW
- Digitization of Content
- Mobile
- The same technology that is incredibly useful and often fun! (so we like it), also affords 'Big Brother'

276.12 billion gigabytes

Recap: The Digital Age

The Problem with Writing ...

- Only people can read it ... [Though recently, some progress in handwriting analysis has occurred; limited use.
- First serious advance in digitization: punch cards
- Herman Hollerith develops idea for 1890 census

Hollerith Card, Courtesy IBM

Next Big Things ... Very Big!

Electronic computers came after WWII

Next Big Things: Integrated Circuits

- Transistors solid state switching
- Integrated Circuit all circuit parts fabbed at

© 2010 Larry Snyder, CSE integrated circuit

Next Big Thing: Personal Computers

Ken Olsen, Founder of Digital Equipment,
 "There is no reason for any individual to have a computer in their home [1977]"

Next Big Thing: Internet

 Invented in 1969, it took almost 20 years to get out of the lab and into public consciousness

© 2010 Larry Snyder, CSE

Next Big Thing: WWW + http

 Today, all computers "speak" a common language: hyper-text transfer protocol

Recap: How do computers compute? Bits and Gates

Positional Notation

 Binary numbers, like decimal numbers, use place notation

1101 in binary is 13 in decimal

Decimal to Binary

- What is the binary representation of the decimal value 21?
- A. 10010
- B. 10100
- C. 10101
- D. 10110
- E. 10111

Binary Addition

011101 +010011

A. 101010

B. 110101

C. 110000

D. 111000

E. 101101

	ASCII	0 0 0 0	0 0 0	0 0 1 0	0 0 1 1	0 1 0 0	0 1 0 1	0 1 1 0	0 1 1	1 0 0 0	1 0 0	1 0 1 0	1 0 1	1 1 0	1 1 0 1	1 1 1 0	1 1 1
	0000	N _U	s _H	s _x	EX	E _T	Eα	A _K	В	B _S	нт	L _F	Y _T	F _F	C _R	s ₀	s _I
What is the first	0001	D _L	D ₁	D ₂	D ₃	D ₄	NK	s _Y	EΣ	C _N	EM	S _B	E _C	F _S	G _s	R _S	Us
letter of the	0010		!	"	#	\$	%	&	1	()	*	+	,	-		/
message at the bottom?	0011	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
A. G	0100	@	A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0
B. t	0101	Р	Q	R	S	Т	U	V	W	Х	Y	Z	[\]	^	_
	0110	`	a	b	С	d	е	f	g	h	i	j	k	1	m	n	0
	0111	р	q	r	ន	t	u	V	W	х	У	Z	{		}	~	D _T
	1000	80	8 ₁	82	83	IN	N _L	s _s	E _S	н _s	Н	Y _s	P _D	P _V	R _I	s ₂	s ₃
	1001	D _C	P ₁	Pz	s _E	СС	ММ	S _P	E _P	α ₈	α _α	Ω _A	c _s	s _T	o _s	РМ	A _P
	1010	A _O	i	¢	£	9	¥	l I	§	••	©	♂	«	¬	-	R	_
	1011	0	±	2	3	-	μ	¶	•	٦.	1	0	»	1/4	1/z	3/4	ડ
	1100	À	Á	Â	Ã	Ä	Å	Æ	Ç	È	É	Ê	Ë	Ì	Í	Î	Ϊ
	1101	Đ	Ñ	Ò	Ó	Ô	Õ	Ö	×	Ø	Ù	Ú	Û	Ü	Ý	Þ	β
0100 0111 0110 1111 0010 0000 0101 0011 0110 1100 0111 0101 0110 0111 0111 0011																	
10/16/16	1111	ð	ñ	ò	ó	ô	õ	ö	÷	Ø	ù	ú	û	ü	ý	Þ	ÿ

Truth Table for And (using 0 and 1)

P	Q	P and Q
1	1	
1	0	
0	1	
0	0	

Truth Table for Or (using 0 and 1)

P	Q	P or Q
1	1	
1	0	
0	1	
0	0	

P and Q or R

- What is P and Q or R if P is true, Q is false, and R is true?
- A.True
- B. False

Recap: Ch 3 BTB-CS Concepts

- document formats
- interpreting bits
- ascii, jpg, mp3, ...
- meta data
- representing digital images
- modeling vs rendering
- ocr
- sampling rate
- cloud computing

- data compression
- spatial coherence
- temporal coherence
- TCP/IP
- role of processing power in audio/video
- steganography
- disk format (deleting data)
- persistence of data (good and bad)

WYSI(not)WYG

- pdf blackout
- MS Office track changes
 - UN report on assassination
 - SCO lawsuit
- scanned vs pdf/doc
 - not searchable/searchable
 - not easily "read" by readers for the blind
- use security "features" to prevent unauthorized modification

Need for Compression

- HD TV 1080p is 1920x1080 pixels
- or 2,073,600 pixels
- or 49,766,400 bits using uncompressed 24 bit color (8 bits for each of Red, Green, and Blue). That's ~50Mbits per image/frame.
- 20 pictures would be 1Gbit
- 1 minute of video at 16 frames/sec would be 47,775,744,000 (~50Gbits)

Compression

- sampling rate (not exactly compression)
- lossy or lossless
- run length encoding
- spatial coherence (lots of blue sky)
- temporal coherence (video of static scene)
- compression trades computing time (power) for storage space or bandwidth

Data That Just Won't Go Away

- Disk Format
 - files = magazine article (continues on page x)
 - index/TOC
 - deleting just removes entry from index/TOC
- Deleting data in the Cloud?
- Data on your cell phone?
- Once a file is copied, it is hard to totally eradicate

Recap – Ch 3 Ghosts in the Machine

- Meta data what you see is less than what you get
- Steganography hiding info in plain sight
- Erased/deleted data may still be around
 - On your disk drive
 - In the cloud
 - On your phone